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ABSTRACT

In this paper, we present an adaptive cognitive music game
designed to monitor and improve the attention levels of peo-
ple with dementia. The goal of this game is to provide a
customized protocol based on user needs and preferences,
following the Reinforcement Learning (RL) framework. The
game adjusts its parameters (e.g., difficulty level) so as to
help the user complete the task successfully, while keeping
them engaged. The main contribution of this paper is an
interactive learning and adaptation framework that enables
and facilitates the adaptation of the robot behavior towards
new users, providing a safe, tailored and efficient interac-
tion.
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computing — Human computer interaction (HCI);

Keywords

Interactive Reinforcement Learning, Policy Adaptation, Robot

Learning and Behavior Adaptation, Robot Assisted Ther-
apy, Music Therapy

1. INTRODUCTION

Alzheimer’s disease is a form of dementia thought to be
caused by neurodegeneration due to plaques and tangles that
collect abnormally in the brain [15]. Alzheimer’s symptoms
include the chronic, incurable loss of memory and cognitive
function, as well as problems with communication and mood
[20]. It is estimated that the number of Alzheimer’s disease
patients worldwide ranges from about 30 to 40 million [1].

Given this worldwide impact, much focus has been placed
on researching pharmacological and biological treatments;
however, these treatments often fail to combat memory loss
or to address the quality of life for the patient [21, 7]. Pre-
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vious work has been done in the investigation of alternative
therapy modalities. In [16] the authors present a therapeutic
robocat to see how patients with dementia would respond.
Their interactions with the robocat led to less agitation,
and more positive experiences. Similarly, in [29] the authors
present Paro, a robotic seal that interacted proactively and
reactively with patients, leading to improvements in various
symptoms.

There is also a growing trend in research on cognitive and
multisensorial therapies, which allow patients to experience
more personalized, complete care, while also offering higher
rates of responsiveness to treatment. For instance, in [11],
the authors argue that music therapy was well received by
patients, resulting to significant decreases in severity, fre-
quency, and disruptiveness of symptoms (compared to con-
trols) as measured by the Neuropsychiatric Inventory (NPI-
NH). Further, music therapy positively influenced not only
cognitive states but also related mood states, like depression
and anxiety [18].

This indicates that there is a need for personalized and tai-
lored robotic assistants that interact with people suffering
from dementia. The goal of such systems is to improve symp-
toms and quality of life for such people, as well as to provide
a personalized protocol by providing users with motivation,
encouragement, and companionship [26]. Such therapies are
also being assessed for other chronic diseases that affect cog-
nition and mood (e.g., Autism Spectrum Disorder, cancer).
Given this expanding body of research, a possible computa-
tional paradigm to quantify the effects of such therapies is
presented in [22].

In this work, we present an adaptive cognitive music game
that employs a NAO robot! that monitors, instructs, and
adapts to user abilities, aiming to encourage task improve-
ment and attention training. We focus on the adaptation ca-
pabilities of such a system, proposing an interactive learning
and adaptation framework that enables the robot to adapt
its behavior towards each specific user, following the Rein-
forcement Learning paradigm.

The paper is organized as follows: In Section 2, we present
several approaches for robot learning and behavior adapta-
tion in the area of robot assisted therapy, showing the mo-
tivation of our work. In Section 3, we present our proposed
adaptation framework. In Section 4, we illustrate the frame-
work by presenting the cognitive music game.

"https://www.aldebaran.com/en/cool-robots/nao



2. ROBOT LEARNING AND ADAPTATION

Robot Assisted Therapy has been extensively applied to
assist users with cognitive impairments [8]. There are works
that indicate that personalized robotic assistive systems can
establish a productive interaction with the user, improving
the effects of a therapy session [26]. Two significant at-
tributes of interactive systems or agents that interact with
users during a training or therapy session, are personaliza-
tion and safety. An interactive agent should be able to adapt
to user behavior preferences and needs. More importantly,
it should be robust to user behavior changes, while also en-
suring a safe interaction [10].

Reinforcement Learning is an appropriate framework for
modeling and optimizing the behavior of an agent that in-
teracts with a user [17, 28]. However, an agent that inter-
acts with many users should be trained to cope with various
users. One approach is to initially train the agent against
simulated users, explore different policies, and then deploy
the system with real users, enabling the agent to refine its
policy for different preferences and abilities of all different
users.

Another approach is to build different user models (or
personas) that capture possible preference profiles. Conse-
quently, it is assumed that the model to which a particular
user belongs to is known prior to the interaction. However,
this approach is more appropriate for long-term HRI appli-
cations, where the agent adapts over repeated interactions
with the users [4]. In this work, we focus on agents that are
able to interactively reuse and modify a learned policy dur-
ing a short-term interaction, without requiring an existing
model of the specific user.

3. INTERACTIVE LEARNING AND ADAP-
TATION FRAMEWORK

As previously mentioned, an important feature of an inter-
active agent is the ability to adapt to new users. If an agent
is trained to interact with a specific user, the learned policy
will not be as efficient to a different user, since each action
may have different effects on them. Moreover, in real-world
applications, the user is not a deterministic environment,
since user dynamics (user intentions, preferences, abilities,
etc.) are subject to change over time.

Our work moves towards the definition and implementa-
tion of a framework for interactive learning and adaptation
[27]. Based on this framework, an interactive agent is able
to adapt a learned policy towards a new user, by exploiting
additional communication channels (i.e., feedback and guid-
ance) provided during the interaction. More specifically, the
framework utilizes implicit feedback provided by the pri-
mary user to refine its learned policy towards the current
user. However, a key challenge is to ensure a safe interac-
tion while adapting the agent’s behavior to a different user.

Our framework supports the participation of a secondary
user, as a supervisor, that can guide the interaction in its
early steps, avoiding unsafe interactions. The supervisor can
either physically or remotely supervise the interaction. A
user interface can be used to provide the supervisor with
useful information, to help them monitor the interaction
and enhance their own decision making, before altering the
agent’s policy. The goal of this framework is to enable agents
to learn as long as they interact with primary and secondary
users, adapting and refining their policy dynamically.

4. ADAPTIVE COGNITIVE MUSIC GAME

In this section, we present the adaptive cognitive music
game that we will use for our experiments. We describe
the game setup and procedure, as well as how we model
the robot’s behavior following the RL paradigm, in order to
train the system for specific users. Then, we illustrate the
proposed framework for dynamical adaptation to new users,
exploiting additional communication channels (i.e., feedback
and guidance).

4.1 Definition of the Cognitive Game

To illustrate our proposed framework, we present a vari-
ation of a cognitive music game called Name that Tune, as
presented in [26]. This game is designed to improve the par-
ticipant’s level of attention. Participants have five buttons in
front of them; the four buttons correspond to a song excerpt
and the last one to silence (no song excerpt). Each button
has the corresponding song title written on it (or 'SILENCE’
for the last button). The user listens to a music collection
of these four songs and is asked to identify the appropriate
song excerpt (or silence), find the correct button, and push
it as soon as possible. The system measures reaction time
and correctness to evaluate user’s performance.

A training session consists of 3 stages. Each stage consists
of N = [4-10] song excerpts, including silence (each song ex-
cerpt is followed by silence). The order of the song excerpts
is random. Each song excerpt is played for a predefined
time or until the user pushes the corresponding button. Af-
ter each song excerpt, a silence excerpt follows.

The goal of the proposed system is to adjust the game
parameters so as to encourage task improvement and atten-
tion training. There are three difficulty levels, based on the
hint the robot provides. At the EASY level, the robot tells
the user which button to push. At the MEDIUM level, the
robot tells the user to push a button, without indicating
which one needs to be pushed. At the HARD level, no hint
is provided. The robot models the difficulty level based on
the user’s performance during the interaction; this allows
the robot to assist the user to finish the task, while keeping
the user engaged.

4.2 Robot Learning
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Figure 1: The game as an Reinforcement Learning
task. The state-action space describes the interac-
tion during the game.



In order to model robot’s behavior, we follow the Rein-
forcement Learning approach [25]. We formulate the task as
a Markov Decision Process (MDP). The state space includes
all the relevant information needed from the robot to decide
its next action. The state features describe the current game
state (stagelD, songID, difficulty) as well as the user’s cur-
rent performance (reaction time and correctness). Based on
these state features, the system must find the appropriate
action of each state, so as to maximize user performance and
engagement.

In [26], the authors proposed an adaptation mechanism
that evaluates user performance after each stage and uses
this information to adapt forthcoming sessions. Our formu-
lation enables dynamical adaptation during the interaction,
making it a challenging problem due to the large state-action
space (Fig. 1).

4.3 Behavior Adaptation

As we already mentioned, an interactive system that in-
teracts with many users should have the ability to adapt its
behavior towards different users. In this section, we illus-
trate our framework [27] from Section 3, for the adaptive
music game. The framework is shown in Fig. 2.

The goal of this framework is to enable dynamical adapta-
tion of robot’s behavior, during each interaction, to different
users. The system uses a learned policy and utilizes two ad-
ditional communication channels to adapt the current policy
efficiently and safely. We follow two Interactive Reinforce-
ment Learning approaches; Learning from Feedback [14] and
Learning from Guidance [5]. We argue that a proper combi-
nation of these two techniques and their integration to the
adaptation mechanism can facilitate the safe adaptation of
the agent towards the current user, exploiting human knowl-
edge provided through these two communication channels.
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Figure 2: Adaptation framework. This framework
extends the RL setup, including two additional com-
munication channels, used for adaptation

We argue that feedback can be considered as a personal-
ization factor. We want to exploit user feedback so as to
adapt the game to user-specific needs. One way to person-
alize this process is to measure user engagement, which can
indicate how active the user is when interacting with the
game, as well as how effective the game is. We propose to

use the Muse EEG headset?, a commercially available tool
that measures electrical activity at the scalp as it relates to
various cognitive and mood states. This type of sensor can
be used to measure how engaged a person is while that per-
son is completing some sort of games or music tasks [12, 19].
It is shown that increased frontal alpha and theta activity
are predictive measures of engagement; sensors like Muse
can be used to measure this type of activity [2] and also in
self-calibrating protocols [13].

Guidance is provided in the form of corrective or suggested
actions, by the therapist. In this way, the agent adapts
to the user preferences and needs and offers the therapist
the ability to intervene in order to ensure safe interactions.
Moreover, the therapist can set their own therapeutic goals
by dynamically altering the agent policy during the interac-
tion.

S. DISCUSSION AND FUTURE WORK

Since this is an ongoing work, several aspects of the game
should be considered. For instance, the type of music that is
selected for the game may play a role in symptom reduction.
In [9], it was found that personalized music choices showed a
significant reduction in patient agitation, but classical music
did not show the same reduction. This makes sense; as
memory is highly individualized, so are the connections that
users will make [24]. As such, the personalization of the
game, as well as the personalization of the music, would
create the best therapeutic tool.

Moreover, the gameplay itself should be carefully regarded.
People who suffer from Alzheimer’s disease and dementia
are open to more memory interference than their healthy
counterparts [6]. Since this population has cognitive im-
pairments in remembering more recent information (as com-
pared to older information), the game should be easy to
teach multiple times, with many built-in prompts for each
step. To assess symptoms, performance for more complex
steps in the game (e.g., having the robot play all music se-
quences first, then asking the patient to recall the order in
which those sequences were played) can be measured to see
if memory problems are stabilizing or worsening. Also, hav-
ing removable labels for the buttons can help the therapist
gauge how much the patient is able to retain while learning
the game. Also, longitudinal studies of these therapies are
greatly needed. In [3], it was shown that music therapy was
helpful in reducing symptoms in a short-term period; how-
ever, this reduction was not long-lasting. Future research
can examine how to expand the longevity of these impor-
tant symptom reductions.

Considering the adaptation framework, we need to investi-
gate how feedback can be used to efficiently modify a learned
policy. Feedback must be handled as a policy modifier and
not as an additional reinforcement signal, since it may not
alter the policy. Guidance can be seen as a human-guided
exploration mechanism [23]. A significant aspect of guid-
ance is the workload of the therapist, that should reduce
over time, indicating that the agent converges to an opti-
mal policy. Active Learning methods can be used to learn,
based on state information (i.e., state uncertainty and im-
portance), when the therapist should intervene.

To conclude with, we proposed an interactive learning and
adaptation framework for dynamically adaptive robot as-

2http://www.choosemuse.com/



sisted therapy. We presented our use case, a cognitive music

game.

Our next steps include the implementation of the

game and a case study with participants to evaluate the
game itself, as well as the proposed framework.
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