Adaptive Robot Assisted Therapy using Interactive Reinforcement Learning

<u>Konstantinos Tsiakas</u>^{1,2}, Maria Dagioglou², Vangelis Karkaletsis², Fillia Makedon¹

¹HERACLEIA - Human Centered Computing Lab Department of Computer Science University of Texas at Arlington, USA

²Software and Knowledge Engineering Lab Institute of Informatics and Telecommunications National Center for Scientific Research, Demokritos, Greece

ICSR 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Outline

Introduction

Use Case Robot Learning

Policy Transfer Experiments Experimental Results

Interactive Learning and Adaptation Framework Description Preliminary Experiments

Ongoing Work

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction Robot Assisted Therapy

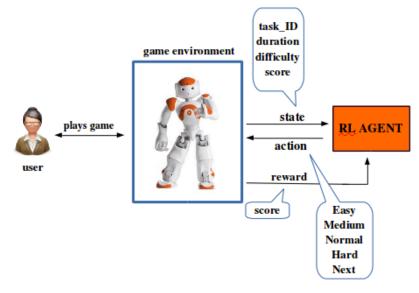
Robot Assisted Therapy has been extensively applied to assist users with cognitive and/or physical impairments

- Robotic Assistive Systems can establish a productive interaction with the user, improving the effects of a therapy session
- Two significant attributes of such systems (or agents) are **personalization** and **safety**
- Reinforcement Learning is an appropriate framework for modeling and optimizing the behavior of an agent that interacts with a user

Related Work

- A robotic seal that interacted with patients to explore the role of the robot in the improvement of conversation and interaction skils (Kidd et al. 2006)
- A Socially Assistive Robot (SAR) motivator to increase user enjoyment and performance on physical/cognitive task (Fasola & Mataric 2010)
- A social robot for personalized Robot-Child Tutoring (Ramachandran & Scassellati 2014)

These works validate that a **personalized** and **adaptive** robotic system can establish a tailored and productive interaction with the user


Adaptive Robot Assistive Therapy Adaptive Training Task

- Adaptive Training Task example: A training task designed to improve participant's specific cognitive or physical aspects
- The user needs to complete a set of three tasks
- The robot models the difficulty level based on the user's performance during the interaction, to assist the user to finish the session, while keeping them engaged

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adaptive Cognitive Task

Robot Behavior Modelling as an MDP

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- The agent needs to learn the **optimal policy**; the mapping from states to actions that maximizes the accumulated reward (or total return) during each interaction
- In order to evaluate this modeling, we apply *e*-greedy
 Q-learning for four different user models
- These user models depict different user skills under different game parameters (task difficulty and duration)

User Models

User 1 (expert)			Difficulty level		
		easy	medium	normal	hard
d 0		1	1	1	1
u	1	1	1	1	1
r	2	1	1	1	1
a t	3	1	1	1	1
i	4	1	1	1	1
0	5	1	1	1	1
n	6	0	0	0	0

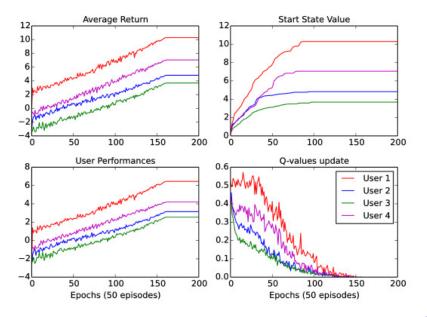
User 2 (novice)			Difficulty level				
		easy	medium	normal	hard		
d	0	1	1	1	1		
u	1	1	1	1	1		
r	2	1	1	0	0		
a t	3	1	0	0	0		
i	4	1	0	0	0		
0	5	1	0	0	0		
n	6	0	0	0	0		

User 3			Difficulty level		
		easy	medium	normal	hard
d	0	1	1	0	0
u	1	1	1	0	0
r	2	1	1	0	0
a •	3	1	0	0	0
i	4	1	0	0	0
0	5	1	0	0	0
n	6	0	0	0	0

User 4			Difficul	lty level			
		easy	medium	normal	hard		
d	0	1	1	0	0		
u	1	1	1	0	0		
r	2	1	1	1	0		
a +	3	1	1	1	1		
i	4	1	1	1	1		
0	5	0	0	0	0		
n	6	0	0	0	0		

■ のへ(

User Models


User 1 (expert)			Difficulty level			
		easy	medium	normal	hard	
d	0	1	1	1	1	
u	1	1	1	1	1	
r	2	1	1	1	1	
a t	3	1	1	1	1	
i	4	1	1	1	1	
0	5	1	1	1	1	
n	6	0	0	0	0	

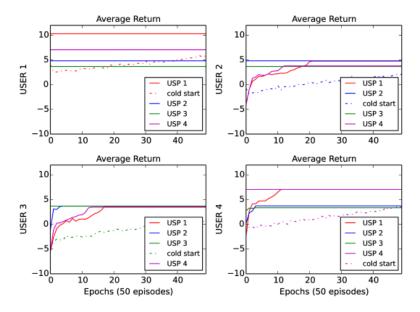
User 2 (novice)			Difficul	ty level	level		
		easy	medium	normal	hard		
d	0	1	1	1	1		
u	1	1	1	1	1		
r	2	1	1	0	0		
a t	3	1	0	0	0		
i	4	1	0	0	0		
0	5	1	0	0	0		
n	6	0	0	0	0		

User 3			Difficul	ty level	level		
		easy	medium	normal	hard		
d	0	1	1	0	0		
u	1	1	1	0	0		
r	2	1	1	0	0		
a t	3	1	0	0	0		
i	4	1	0	0	0		
0	5	1	0	0	0		
n	6	0	0	0	0		

User 4			Difficul	ty level	y level		
		easy	medium	normal	hard		
d	0	1	1	0	0		
u	1	1	1	0	0		
r	2	1	1	1	0		
a t	3	1	1	1	1		
i	4	1	1	1	1		
0	5	0	0	0	0		
n	6	0	0	0	0		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Policy Transfer Experiments

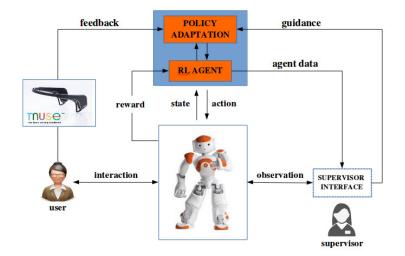

We make the following assumptions:

- A user specific policy (USP) is the optimal policy (for the corresponding model); the one that maximizes total return, thus user performance
- Applying a learned policy to a different user model may not be efficient but better than learning from scratch

We apply the four different USPs to the four different user models, following an exploitation-only approach (minimize risks and harmful actions)

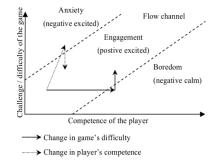
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Policy Transfer Experiments Results


Interactive Learning and Adaptation Framework Description

- A framework that utilizes **Interactive Reinforcement** Learning for dynamical adaptation
 - Learning from Feedback treats the human input as a reward after the executed action
 - Learning from Guidance allows human intervention to the selected action before execution, proposing (corrective) actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00


 Integration of user feedback and expert guidance towards a lifelong learning setup

Interactive Learning and Adaptation Framework

Interactive Learning and Adaptation Framework Learning from Feedback

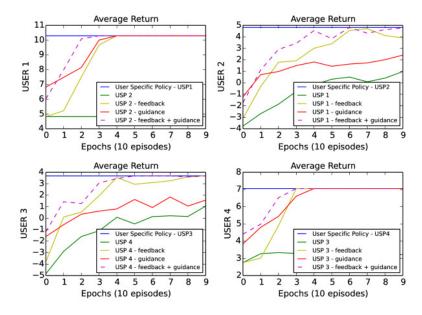
Strong involvement in a task occurs when the skills of an individual meets the challenge of a task (Chanel et al. 2008)

$$feedback = |diff - diff'| / N_{diff} \in [-1, 0]$$

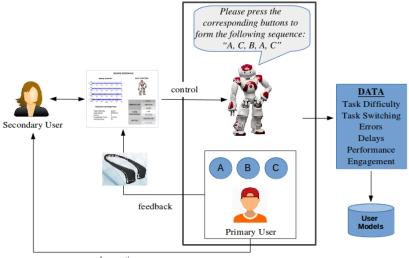
 $Q(s, a) = Q(s, a) + \beta \cdot feedback$

Interactive Learning and Adaptation Framework Learning from Guidance

Combination of two techniques:


- Human-guided exploration SPARC (Senft et al. 2016)
- Teaching on a budget- mistake correcting (Torrey at al. 2013)

Assumption: Almost perfect supervisor – follows the corresponding USP with probability p


If $n < N \&\& action_{MDP} \neq action_{supervisor}$: perform $action_{supervisor}$ with probability p = 0.7 (otherwise $action_{MDP}$) $n \neq 1$

- ロ ト - 4 回 ト - 4 □

Preliminary Adaptation Experiments

Ongoing Work

observation

Thank you...

Contact konstantinos.tsiakas@mavs.uta.edu

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ