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ABSTRACT

In this paper, we present an interactive learning and adapta-
tion framework. The framework combines Interactive Rein-
forcement Learning methods to effectively adapt and refine
a learned policy to cope with new users. We argue that im-
plicit feedback provided by the primary user and guidance
from a secondary user can be integrated to the adaptation
mechanism, resulting at a tailored and safe interaction. We
illustrate this framework with a use case in Robot Assisted
Therapy, presenting a Robot Yoga Trainer that monitors
a yoga training session, adjusting the session parameters
based on human motion activity recognition and evaluation
through depth data, to assist the user complete the session,
following a Reinforcement Learning approach.
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1. INTRODUCTION

Interactive Learning Agents are entities that learn what to
do, through interacting with their environment — agent pol-
icy. A significant attribute of these agents is the adaptability
of their policy towards a goal, in a dynamic and stochastic
environment, as when a human user is involved in the inter-
action [8]. For this reason, interactive agents and systems
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have been successfully employed to Robot Assisted Ther-
apy, with applications to physical and cognitive rehabilita-
tion [24, 15].

Two major aspects of such applications are safety and
personalization. An intelligent interactive agent should be
adaptive to each user needs, preferences and abilities [16],
while ensuring a safe interaction [5]. Such applications may
also support the participation of a secondary user, who su-
pervises the interaction with the primary user, resulting to
a multiparty interaction (child, robot and therapist [6]). In
real-world applications, such agents need to interact with
many users. Thus, an agent should be able to adapt to dif-
ferent users by efficiently modifying a learned policy, instead
of learning from scratch for each user [27].

In this work, we present an interactive learning frame-
work that combines Interactive Reinforcement Learning [22,
1] and Transfer Learning [21, 27] methods to facilitate the
policy adaptation of an agent to new users. We argue that
interactive learning techniques can be used for adaptation,
exploiting the expertise of an expert that supervises and
guides the interaction, when needed, as well as the implicit
feedback, provided by the primary user, in the form of an
affective signal (e.g, heart rate).

We illustrate the proposed framework with an application
in Robot Assisted Therapy, presenting a Robot Yoga Trainer
that adjusts the session parameters to assist the user com-
plete the session efficiently. The system evaluates the user’s
performance, through a human activity recognition and eval-
uation module. The main focus of this paper is to investigate
how such a system can modify an existing policy towards a
new user, exploiting additional communication channels as
feedback and guidance.

2. BACKGROUND AND RELATED WORK

Robot Assisted Therapy has been widely observed and
tested as a tool to advance physical rehabilitation in spe-
cific cases, such as upper limb function for individuals that
suffered from a stroke, or music therapy for people with de-
mentia [20, 14]. Among this research, there is a consistent
theme for the need to address patient motivation and en-
gagement [13].



Reinforcement Learning (RL) provides an appropriate frame-

work for interaction modeling and optimization and has been
successfully applied to interactive systems with applications
to HRI systems [15, 24]. In [20], the authors present a re-
inforcement learning approach for a long-term learning and
adaptive socially assistive robotic system. Their main focus
is policy adaptation for optimizing basic interaction param-
eters as proxemics and vocal content, so as to refine it to the
user personality, preferences and needs and thus improve the
user task performance.

In [17], the authors present a study on robot assisted tu-
toring to children, discussing the need of providing adaptive
support to each child during a tutoring interaction. They
argue that the adaptive robot should use affective feedback,
provided by the child, to further tailor its support strategies,
enabling the agent to interact with different users. In [18],
they propose a supervised autonomy method that enables
the therapist, as a secondary user, to guide the early in-
teraction steps of the interaction is a robot assisted therapy
application, where random exploration-based learning is not
desirable, since it may lead to harmful interaction.

Interactive Reinforcement Learning (IRL) is a variation of
RL that studies how a human can be integrated in the agent
learning process. Human input can be either in the form of
feedback or guidance. Learning from Feedback treats the
human input as a reinforcement signal after the executed
action [10]. Learning from Guidance allows human inter-
vention to the selected action before execution, proposing
(corrective) actions [2]. We argue that IRL and transfer
learning techniques can be combined to enable efficient pol-
icy adaptation towards a new user. In the next sections, we
present the proposed framework and the application of this
to Robot Assisted Therapy.

3. PROPOSED FRAMEWORK

‘We propose an interactive learning and adaptation frame-
work that enables an interactive agent to modify its policy in
an online fashion. More specifically, the framework utilizes
implicit feedback provided by the primary user to refine its
learned policy towards the current user. However, ensuring
a safe interaction while adapting the agent’s behavior to a
different user is a key challenge. Our framework supports
the participation of a secondary user, as a supervisor, that
can guide the interaction in its early steps, avoiding unsafe
interactions. The goal of this framework is to enable agents
to learn as long as they interact with primary and secondary
users, adapting and refining their policy dynamically [23].

4. APPLICATION TO ROBOT ASSISTED
THERAPY: YOGA TRAINING

In this section, we illustrate our proposed framework with
a use case in Robot Assisted Therapy. More specifically, we
present a yoga training system that dynamically adapts to
different user abilities and needs. Yoga has been recently
employed as a means for therapeutic rehabilitation, demon-
strating its ability to promote physical strength, flexibility,
respiratory and cardiovascular functions, as well as mental
health, well-being, and overall quality of life [26]. For this
paper, we plan to integrate physical routines from yoga with
physiological feedback and robotic support as an interactive
avatar.

In specific, we follow the following scenario. The user
has to perform a set of five physical routines, prescribed by
the therapist. Each routine consists of a predefined set of
poses. The amount of time each pose must be performed
can be modified to help the user complete the whole session
successfully. A NAO robot demonstrates the prescribed ex-
ercises and the user is asked to perform the demonstrated
exercise along with the robot. The system monitors the ex-
ercise execution and adjusts the session so as to help the
user perform the exercises efficiently.

S. SYSTEM ARCHITECTURE

In this section, we present the architecture of our proposed
system as shown in Fig.1. The robot demonstrates the pre-
scribed exercises and asks the user to perform them. Based
on its learned policy, the system adjusts the difficulty uti-
lizing the motion data acquired by the Kinect sensor. Two
additional communication channels (heart rate feedback and
therapist guidance) are integrated to the adaptation module
for the efficient policy refinement to the specific user.
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Figure 1: System Architecture.

5.1 The NAO platform

The NAO is a small humanoid robot developed by Alde-
baran that can move with 25 degrees of freedom and is
equipped with various sensors. It can be programmed vi-
sually using Aldebaran’s Choreograph software, or by using
C++ or Python with the provided SDK. The role of the
NAO in this application is to demonstrate exercises to the
user and ask them to perform them. The NAO robot has
the ability to demonstrate basic yoga movements, depending
on the complexity of the pose and how accurately it should
resemble the human pose [12]. We investigate the exercises
and poses that NAO can demonstrate with different type
parameters (time, accuracy).

5.2 Hardware

Other hardware to be considered in this system, aside
from the NAO, is foremost the Microsoft Kinect. The Kinect
is a motion capture sensor with an RGB camera, infrared
sensor and microphones that allow full body motion cap-
ture, facial and voice recognition. Heart rate is a relevant



measurement that the Kinect v.2 is also capable of by de-
tecting small fluctuations in the skin. More reliable, wear-
able heart rate monitors could also be used, such as a smart
watch, which use infrared and LEDs that see flow of the
blood in the wrist to measure heart rate. This would be
slightly more cumbersome than solely a Kinect, but only
slightly so, and with the benefit of increased accuracy and
reliability, if needed.

5.3 The RL agent

The RL agent is responsible for the action selection of the
system. An RL agent learns an optimal policy as it inter-
acts with the user environment, receiving a reward for the
transition of one state to another, by performing an action.
The optimal policy is the mapping from states to actions
that maximizes the expected total reward. In this section,
we show the problem formulation as a Markov Decision Pro-
cess (MDP).

The state space includes all the information needed by
the agent to decide for its next action. The state space in-
cludes information about the session (which exercise is being
demonstrated and the parameters of this exercise) and the
user (user performance). The system considers the state in-
put in order to decide for the next action. The agent must
take the appropriate action, based on the current state, so
as to help the user finish the session, maximize their per-
formance and prevent them from quitting. The system can
either adjust the time of the demonstrated movements, move
to the next exercise, or encourage the user.

The goal of the RL agent is to find a policy that maxi-
mizes the expected return at the end of each episode. After
each action, the agent receives a reward that evaluates the
action selected based on the current state. The agent re-
ceives a reward for each transition, evaluating the current
policy. The reward signal is a function of user performance
as received by the human motion recognition and evaluation
module output.

5.4 Human Motion Recognition and Evalua-
tion

An important component of the proposed system is the
human-activity recognition and evaluation module. That
module will be responsible for providing performance related
scores both to the RL module and the therapist.

Part of our ongoing work focuses on the development of
a framework for human motion analysis by exploiting the
advantages of the 3D point clouds offered by depth sensors
(such as Microsoft Kinect). Recent literature has shown
that depth maps have several advantages compared to tra-
ditional color images. For example, depth maps reflect pure
geometry and shape cues, which can often be more discrimi-
native than color and texture in many problems. Moreover,
depth maps are insensitive to changes in lighting conditions
and can secure privacy since color, texture and minor shape
details are absent from the retrieve information[25].

Going towards that direction, we propose a two-step motion-

analysis framework. Initially a step for real-time motion
recognition will be applied. Deep Architectures [25, 4, 3]
have dominated recent research in vision-based activity recog-
nition showing state-of-the-art results in recognizing activ-
ities in semi-structured environments such as ours. As an
additional step, we research on developing evaluation mea-
sures on the top of recognition. We discriminate evaluation

measures in two basic categories. General measures and
application-dependent measures. As general measures, we
consider metrics related to the spatio-temporal information
of the action. For example, time required to complete the ac-
tion, range of motion when performing it and also time and
range of motion deviation compared to the prescribed move-
ment. Application-dependent measures can also be used
to further tailor the system, as attention level [7] and the
amount of extraneous movements.

5.5 Therapist Interface

In our setup, a therapist can be either present or observe
the session remotely through a user interface. The user inter-
face presents to the therapist information about the session
and the user. This information can be used by the therapist
to intervene to the interaction, when needed, Moreover, the
therapist can guide the early interaction steps to set specific
therapeutic goals. The interface also presents information
about the agent policy, enabling the therapist to provide
corrective actions, to either avoid an inappropriate action
or to guide the agent’s action selection.

5.6 Adaptation Module

The adaptation module is responsible for adapting a learned
policy and refine it towards the current user. We propose
the integration of IRL techniques, defining two extra com-
munication channels; guidance and feedback. We argue
that human knowledge and intentions can be communicated
through these channels and can be utilized for an efficient
and safe adaptation of the agent to the specific user.

Guidance is communicated to the agent through the ther-
apist interface. It can either be a corrective action, or a set
of proposed actions, based on the therapist therapeutic goals
and expertise. This information is processed and integrated
to the learning mechanism.

Feedback is implicitly provided by the user while exer-
cising, through the heart rate. In research and clinical use,
heart rate (HR) has consistently been used as a non-invasive
and inexpensive method to calculate an individualaAZs car-
diovascular responses to physical activity [11, 9]. As a true
measurement in living persons, HR can effectively determine
physical training work-loads through the recording of rest-
ing HR and an individual's max HR [19]. Additionally, HR
can act as a universal metric that can adapted to individuals
across age, gender, and habitual exercise status.

Implicit feedback can be considered as a personalization
factor. The adaptation module uses this information to re-
fine its current policy so as to adapt to the current user.
On the other hand, guidance is provided by an expert user
ensuring a safe interaction as the agent adapts to the user.
Our ongoing work moves towards the combination of these
two different channels and integration to the learning mech-
anism.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an interactive learning and
adaptation framework. The framework combines interac-
tive learning techniques and utilizes them to refine a learned
policy towards a new user. We argue that implicit feedback,
provided by the primary user and guidance from a secondary
expert user can be integrated to the learning mechanism,
aiming at a tailored and safe interaction. As an ongoing
work, the next step is to study each module separately and



then integrate them. Considering the adaptation frame-
work, we need to investigate how feedback can be used to ef-
ficiently modify a learned policy. Feedback must be handled
as a policy modifier and not as an additional reinforcement
signal, since it may not alter the policy. Guidance can be
seen as a human-guided exploration mechanism; [18] How-
ever, therapist interventions should also provide additional
information to the agent, facilitating the adaptation. A sig-
nificant aspect of guidance is the workload of the therapist.
Therapist’s interventions should reduce as the agent learns,
indicating that the agent converges to an optimal policy. Ac-
tive Learning methods can be used to learn, based on state
information (i.e., state uncertainty and importance), when
the therapist should intervene.
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