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ABSTRACT 

Physical exercising is an essential part of any rehabilitation plan. 

The subject must be committed to a daily exercising routine, as 

well as to a frequent contact with the therapist. Rehabilitation 

plans can be quite expensive and time-consuming. On the other 

hand, tele-rehabilitation systems can be really helpful and efficient 

for both subjects and therapists. In this paper, we present 

ReAdapt, an adaptive module for a tele-rehabilitation system that 

takes into consideration the progress and performance of the 

exercising utilizing multisensing data and adjusts the session 

difficulty resulting to a personalized session. Multimodal data 

such as speech, facial expressions and body motion are being 

collected during the exercising and feed the system to decide on 

the exercise and session difficulty. We formulate the problem as a 

Markov Decision Process and apply a Reinforcement Learning 

algorithm to train and evaluate the system on simulated data.  

Categories and Subject Descriptors 

I.2.6. [Artificial Intelligence]: Learning 

Keywords 
Multimodal Adaptive Systems, Reinforcement Learning, Markov 

Decision Process, Personalized Rehabilitation Systems.  

1. INTRODUCTION 
Physical Activity (PA) and Physical Training (PT) are essential 

parts of any rehabilitation plan and have been shown to promote 

health, slow disease progression and improve the activities in 

daily living (ADL) [1,2]. Improving motor abilities, including 

body function and physiological recovery require long 

rehabilitation plans and engagements from both the subject and 

the therapist [3,4].  

Physical Exercising has been proven to also be a therapeutic 

intervention to prevent brain damage associated with 

neurodegenerative diseases and chronic diseases [5], such as 

Rheumatoid Arthritis (RA) and fibromyalgia (FM). A challenging 

point of any rehabilitation plan is to keep the subject engaged in a 

daily exercising routine, maximizing subject’s compliance to the 

regimen, while keeping them safe from harmful injuries during 

exercising. In order to achieve such requirements, a personalized 

and adaptive rehabilitation plan is required [6]. Rehabilitation 

session exercises have to be continued at a level of difficulty that 

is adapted to the subject’s changing physical and mental 

capabilities over time. The exercise regimen can vary widely from 

case to case, depending on the subject’s physical and 

psychological condition, age, medication, and many other factors 

including knowledge and support for exercise programs.  

A significant burden on rehabilitation plans is that they can be 

really expensive and time-consuming, especially when the subject 

needs a long-term treatment. Recent advances in tele- 

rehabilitation systems [7, 8, 9] using advanced technologies and 

virtual reality (VR) systems have been proposed to overcome 

these burdens. VR technologies combined with multimodal 

sensing systems are being examined to be used to transform the 

traditional physical exercising and give the opportunity to the 

subject to perform the prescribed exercises from their own 

environment, while giving essential feedback and data to the 

therapist to enhance their decision making [10,11,12]. An 

example of such a telerehabilitation system that uses avatars and 

sensors to monitor the subject’s performance is shown in Fig.1. 

 

 

Figure 1. A tele-presence rehabilitation session that shows the remote 

therapist, the subject and an avatar that represents the subject seen 

inside the inner frame. (A. Hagman, Swedish Health Care, 

RoboBusiness Leadership Summit, 2012). 

Such systems collect and process data from various sensors to 

monitor the performance of the subject while exercising. Answers 

to basic research questions for such systems lie in the areas of 
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computer vision, data analysis, graphics, avatar design, dialogue 

systems and human-computer interaction.  

Such a system must be dynamically adaptive, utilizing meaningful 

data from the subject during the rehabilitation session. Subject 

preferences and performance must be monitored to maintain an 

appropriate exercise difficulty level. Due to the repetitive nature 

of most of the rehabilitation exercises, the subject is not easily 

engaged over longer periods of time and more likely to quit. This 

is especially true if the difficulty level of the exercise is 

predefined and static. The subject should take initiative and 

remain motivated to intensively training at home [13].    

Making the exercise regimen adaptive in real time is the biggest 

computational challenge. ReADAPT utilizes multisensory data 

such as body motion data, facial pain expressions, and speech as 

well as session information such as time spent on each exercise 

and the performance on the current exercise difficulty level. All 

this information is used as feedback to the system to modify and 

adapt the exercise category and difficulty. The purpose of such a 

system is to ensure that subjects are consistently and correctly 

performing their rehabilitation exercises according to the 

specified, by the therapist, protocol at home under the (remote) 

supervision of a therapist, while monitoring the pain levels to 

ensure safety and compliance.   

ReADAPT provides the therapist with a general framework to 

define a specific exercise protocol and the various system 

parameters based on the subject’s needs and personalized plan. It 

enhances the therapist’s decision making by suggesting the 

exercise difficulty level, in order to achieve a high performance 

and subject compliance to the exercising plan.   

2. RELATED WORK 
Recent works have proposed adaptive systems to enhance the 

human performance or monitor the execution of exercising during 

rehabilitation sessions. Researchers have proposed the use of 

robotic platforms to assist the subject perform specific tasks. In 

[14] they propose ADAPT, a robotic task-practice system that 

enhances the recovery of upper extremity functions in post-stroke 

subjects. They present a task scheduler that decides which task the 

subject must perform based on his previous performance. They 

focus on the robot dynamics in order to simulate daily living 

functional tasks, such as opening a doorknob, opening a jar, 

turning a key, etc.  

In [15, 16] a home-based mixed reality rehabilitation system is 

proposed. In [15], they presented HAAMR, a system to restore 

motor function for chronic post-stroke survivors by providing an 

engaging long-term limb-reaching task therapy at home. It allows 

participants to complement their therapy by training reaching 

movements, reach-to-touch, and reach-to-grasp tasks over 

multiple months of therapy at home. They utilize multimodal 

sensing methods for measuring hand trajectory, hand speed, target 

manipulation and torso movement while the user performs the 

task with certain objects.  

Other systems have formulated the rehabilitation procedure as a 

fully or partially observable Markov Decision Process (POMDP). 

In [17], POMDP was used for the decision-making module to 

automatically modify the exercise parameters using a robotic 

system that guides stroke subjects through an upper-limb reaching 

task. The system uses motion range data, learn rate and time, as 

well as fatigue levels of the subject while performing specific 

reaching rehabilitation tasks. In [18], a reaching task is modeled 

as a trajectory in the state space of hand part features using MDP 

and a learning reward. 

In previous work, we have proposed a theoretical framework of a 

system that uses a dialogue system able to interact naturally with 

the subject in order to ensure exercise safety and monitor the 

subject’s performance during the session [19]. An important 

attribute of this system is that it allows natural communication 

between the user and the system, using audiovisual automatic 

speech recognition [20] and Natural Language Understanding 

(NLU). The patient subject can interact with the system to provide 

a self-report on comfort and pain levels in order to ensure safety 

and the system uses this feedback to adapt the session to make it 

safe.  

In this paper, we present a framework for ReADAPT, the 

adaptation module which is responsible for the decision-making 

and the personalization of the rehabilitation session, based on the 

multisensing input that is collected during the rehab session. We 

define the problem as an optimization problem, using the Markov 

Decision Process formulation and apply Reinforcement Learning 

algorithms for the system training.  

3. BACKGROUND 
Markov Decision Process (MDP) models provide a mathematical 

framework for modeling decision making in systems where the 

outcomes are random. They are an extension of Markov chains, 

with the addition of actions (choices) and rewards (environmental 

feedback). A Markov Decision Process is a 5-tuple {S, A, R, T, γ}, 

where S is a non- empty set of states s, A is a non- empty set of 

actions α, R is the reward function which is expressed either in 

terms of state R(s) or action-state pair R(s, a);  T is the transition 

model, which gives the probability P(s’ | s, a); the probability that 

action a ∈ A in state s ∈ S will lead to state s’ ∈ S, and γ ∈ [0,1]  is 

the discount factor, which represents the difference in importance 

between future rewards and present rewards.  

Of interest is to calculate the cumulative rewards as collected 

during the transitions from state to state until reaching a final 

state. In most problems that are modeled as an MDP, we are 

interested in maximizing the cumulative discounted reward or 

return. We therefore need to select an action for each state that 

will (in the future) maximize the return. An MDP policy π is a 

mapping that dictates which action to take at each state. More 

formally, it is a mapping of each state and action to the probability 

π(s,α) of taking action α in state s. The goal is to find an optimal 

policy, through a trial-and-error process of repeated interaction 

with the user. An optimal policy is a policy that maximizes the 

cumulative discounted expected reward.  

Reinforcement Learning (RL) has been extensively applied to 

problems where a system or agent must learn behavior through 

trial-and-error interactions with a dynamic environment [21]. 

Such systems can learn the optimal policy based on the 

environmental feedback. One of the strongest points of this 

approach is that the system learns from experience. In this way, 

the system can adapt to its environment and find an optimal 

policy. During the interactions, the system updates the state values 

V(s), that represent the total expected accumulated rewards 

starting at state s, or state-action values Q(s,α), that represent the 

total expected accumulated reward starting at state s and taking 

action a. 

The agent must explore the environment to gather information 

about which actions can lead to the optimal policy. We need to 



both explore the environment for unexplored areas (exploration) 

and use the existing knowledge to make better decisions 

(exploitation). In this sense, there must be a balance between 

exploration and exploitation. To gain more rewards, the agent 

must follow the actions that it knows will lead to high immediate 

rewards, while it also needs to explore more states to gain 

knowledge about the environment.  

Two basic approaches for RL solving are off-policy and on-policy 

strategies. An off-policy learner learns the value of the optimal 

policy independently of the agent's actions. It can update the 

estimated value functions using hypothetical action, which may 

not have actually been used. An on-policy learner learns the value 

of the policy being carried out by the agent, including the 

exploration steps. The most common exploration techniques are   

ε-greedy and softmax. In many cases the exploration strategy 

depends on the time the agent has interacted with the environment 

or the successes during the interactions [22]. 

Policy learning has been approached using two different forms of 

reinforcement learning that are referred to as model-based and 

model-free learning [23]. Their difference is that in model-based 

learning, the system uses training data to build a complete model 

of the environment and the optimal policy and the value function 

can be found off-line, whereas in model-free learning the agent is 

not aware of the model and learns the value function and the 

policy only by experience (interaction data). Model-based 

approaches are often referred as planning. In model-based 

learning, when the model is inaccurate, the planning process will 

compute a suboptimal policy. The solution is either a model-free 

approach or to reason explicitly about model uncertainty [22]. 

However, an integration of real and simulated experience can 

overcome these problems and the leaner can converge to an 

optimal policy. This architecture is called Dyna architecture and 

Dyna-Q is an algorithm that follows this architecture [24]. It 

learns a model from real experience and learns the value function 

and policy from real and simulated experience. Dyna-Q randomly 

selects previously visited state-action pairs to perform simulated 

steps and update the Q-values until it converges to an optimal 

policy. 

 

 

Figure 2.  The Dyna-Q algorithm 

 

During planning, the Dyna-Q algorithm randomly samples only 

from the set of state-action pairs that have previously been 

experienced, so the model is never queried with a pair about 

which it has no information. Planning is achieved by applying 

reinforcement learning methods to the simulated experiences just 

as if they had really happened. Dyna-Q is a useful algorithm 

because it can converge much faster, since it performs simulated 

updates for each actual episode. It also can be efficient even if it 

starts with an inaccurate model, since it learns a model from real 

experience.  

4. THE ADAPTIVE SESSION MANAGER 

AS A MARKOV DECISION PROBLEM 
In this section, we describe the problem formulation as a Markov 

Decision Process (MDP). We define the state space, the action 

space and the reward function. We give a detailed description of 

the system and the MDP definition.  

4.1 System Description 
As already mentioned in previous sections, the goal of ReADAPT 

is twofold; to engage the subject to complete the whole session of 

the exercises while preventing him/her from injuries (maintain 

safety) and high pain levels (maintain compliance). In order to 

achieve this, the manager must learn the optimal policy π; which 

action is best at each state, through real or simulated interactions. 

Each interaction is called here a session, and describes the 

execution of the exercises that the system prompts to the user until 

it reaches a final state. A final state on this system can be either a 

goal state, where the subject completes successfully the whole set 

of exercises, or a quit state, where the subject decides to quit. We 

follow the strong assumption that the subject is more likely to quit 

or be non-compliant under high levels of pain [25].  

During each session, the manager uses the multimodal input 

(speech, facial expressions, body motion, and session 

information) at time t to define the current state st. Based on this 

multimodal input, the manager performs a specific action at and 

observes the new state st+1 and the reward rt based on the 

environmental feedback. In other words, the manager may prompt 

the subject to perform the same exercise at a higher difficulty 

level and receive feedback, i.e., multisensory subject data, that the 

subject does not perform the exercise correctly. The manager 

receives a numerical reward that describes how good the selected 

action was and updates its knowledge for this specific state-action 

pair, by updating the Q-value.  The system architecture is shown 

at Fig. 3. 

 

Figure 3. System Architecture 

  

4.2 State Space 
Our approach follows the following scenario: The subject must 

complete a set of three prescribed exercises. Each exercise has 

three difficulty levels (Normal- 1, Medium- 2, Easy- 3). Each 

exercise starts at the Normal level. The system keeps track of the 

time spent on each exercise using time units (1- 5). Each time the 

same exercise is performed at any difficulty, the time unit is 



increased by one. At this representation, time unit 1 is the less 

time that the subject will spend on this exercise, while 5 indicates 

that the subject has spent too much time on the same exercise. The 

specific mapping from actual time to time units shall be defined 

by a professional therapist.  

During the exercise performance, the system measures the 

exercise performance compared to the ground truth given by the 

therapist, by analyzing the body motion capture of the subject    

(1- Good, 2- Medium, 3- Bad). Also a pain detection module is 

used to decide if there is a facial pain expression or not (0- No, 1- 

Yes). An important state feature is the user pain report. The 

system learns to prompt the subject, asking for comfort and pain 

levels, aiming to get an explicit answer. Responses are translated 

into a numeric value (0-11), according to the Numeric Rating 

Scale (NRS-11), an 11-point scale for subject self-reporting of 

pain [36]. To our knowledge, few related works combine 

audiovisual feedback from the user to express their pain or fatigue 

levels and the interest in these works has focused for example in 

emergency response systems [26,27].  

Collecting such information during real interactions can be very 

useful for improving the system’s pain detection, accuracy, due to 

the challenge of being influenced by subjectivity. Moreover, we 

include the age of the user pain report, because the system does 

not prompt the user to provide it in the self-pain report at each 

exercise and recent pain reports are more significant than older.  

4.3 Action space 
The system considers the multimodal/multisensing input in order 

to decide on the next action. The system takes such actions in 

order to: 

 Engage the subject to complete the whole set of 

exercises correctly; if the subject does not execute well 

one exercise the system learns to level down the 

difficulty of the exercise. 

 Keep the exercise difficulty level at the most efficient 

level (Normal). In case the subject cannot perform well 

or there are indicators of pain, the system learns to 

adjust the difficulty type or level of exercise.   

 Prevent the subject from incurring an injury and/or high 

levels of pain; if the system detects a facial expression 

denoting pain, then it may ask the user to provide their 

own pain report level and then lower the exercise 

difficulty. 

 Spend the appropriate amount of time on each exercise; 

the system keeps track of the time spent on each 

exercise, so if a lot of time is spent in one exercise, then  

the system prompts the user to move to the next 

exercise.  

 Prevent high pain levels; if subject’s pain is at a high 

level, then it is more likely that the subject will quit. 

The system’s available actions can modify and adjust the session 

by changing either the exercise itself or its difficulty level.  

4.4 Reward Function 
An important part of the problem formulation as a Markov 

Decision Process is the reward function definition. It is 

responsible for evaluating the state-action pairs. For this 

approach, we designed the reward function to be dependent on the 

state features that describe the exercise ID and level and the 

duration of each exercise. The reason we did not include the pain 

features is that they directly influence the possibility of quitting, 

where the manager receives a high negative reward.  

The reward function is formulated as follows: 

 

 

 

Regarding the level of the exercise, we defined the reward as an 

exponential function. The manager system will learn to take the 

appropriate actions in order to reach the highest exercise level 

resulting in a successful session.  

On the other hand, the subject must spend an appropriate amount 

of time on each of the exercises. In order to achieve this, we use a 

Gaussian distribution with mean μ = 3. We define the appropriate 

time for each exercise to be three time units, where the Gaussian 

gives the highest density value. When the subject completes the 

session, the system receives a positive reward, while it receives a 

high negative reward in case of quitting the session. In Table 1, 

we summarize the state and action space, as well as the reward 

function features. 

Table 1. Definition of the Markov Decision Process 

 

5. SIMULATION AND GRAPHICAL USER 

INTERFACE 
A significant weakness of RL approaches is the lack of data 

needed in order to estimate a transition model or to implement a 

reliable and accurate user model. In order to make an initial 

evaluation of our manager system, we have manually defined 

probability models to express the user responses to the session 

modifications based on the system actions. Moreover, using the 

Dyna architecture, as we mentioned, the system also learns a 

model based on experience. 

Our assumption is that using a probabilistic model for the 

subject’s reactions (e.g., pain, performance, quitting) to the 

system’s decisions, expresses the uncertainty due to human 

factors, at a simulation level.  

We define five user models that describe the different state 

features. Specifically, we define the User Real Pain model, the 

User Pain Report model, the User Visual Pain model, the User 

Exercise Correctness model and the User Quit model. 



5.1 User Real Pain model 
In order to simulate as accurately as possible the pain reaction of 

the subject while performing the exercises, we define a model for 

the subject/user real pain. However, the state variables that refer 

to the subject’s pain level are the user pain report and the visual 

pain detection. These variables cannot be defined in a 

deterministic manner. A user that suffers from high level of pain 

may provide the system with different user pain reports due to 

underestimation or overestimation. Moreover, we need to take 

into consideration the error possibility of the visual pain detection 

module. We will discuss about these two state variables and their 

models in the corresponding subsections.  

In particular, the real pain model gives the probability              

P(RP| EL, RP_pr), where RP ∈ [0,1,2,3] is the variable indicating 

the real pain level, EL ∈ [1,2,3] is the variable indication the 

exercise difficulty level and RP_pr indicates the real pain level 

during the previous exercise execution.  

We make the assumption that the level of pain depends on the 

exercise level and the pain level experienced previously. In other 

words, a more demanding exercise has a higher probability to 

show or lead to higher than normal levels of pain, if there was a  

high level pain (i.e. RP_pr) experienced previously, than if the 

exercise started without any previous high pain Table 2 shows the 

defined model that takes into account this discussion.  

Table 2. User Real Pain model 

 

5.2 User Pain Report model 
One of the possible actions of the manager is to ask the user for 

their own pain report. The pain report is translated into a 

numerical likert scale [36]. As mentioned in the real pain model 

section above, the user pain report depends on the actual pain of 

the subject. Based on the real pain level, the model gives the 

probability P(UR| RP), where UR ∈ [0,11] is the variable that 

indicates the user report in the likert scale and RP is the real pain 

level defined by the real pain model.  

The significance of using this model is the consideration of the 

human factors affecting the computation. The subject can 

misestimate their actual pain level. The basic reason is that pain 

cannot be measured and classified into a specific numeric level 

deterministically, since it is subjective. Moreover, other factors, 

such as psychological or physiological condition, led us to define 

the UR variable dependent on the real pain level, as shown in 

Table 3.  

Table 3. User Pain Report model 

 

5.3 User Visual Pain model  
An important state variable of MDP is the feedback of the pain 

detection module using facial features. In [28], a pain detection 

system is described, that uses shape and appearance facial 

features. The accuracy of their system reaches 90.2% using 

decision trees. Despite this high accuracy, it still has an error 

possibility. For this reason, we define a visual pain model that 

gives the probability P(VP |RP), where VP is a binary variable 

indicating the presence or absence of pain.  Based on the high 

accuracy that the pain detection system achieves, we assume that 

if the real pain level is the minimum or maximum, the pain 

detection system will be accurate. The probabilistic model we 

define is suitable to handle the uncertainty of the pain detection 

system for the mid-levels of pain, as shown in Table 4. 

Table 4. User Visual Pain model 

 

We have to mention that such models are used in order to make an 

initial evaluation of our proposed approach. Through the 

collection of real user interaction data, the system can learn a 

more robust learning model for our system’s user. .  

5.4 User Exercise Correctness model  
A valuable feedback for the session manager is the exercise 

execution correction by the subject-user. If the subject 

underperforms or executes an exercise in an improper way, 

differently than the one prescribed, the system must adjust the 

difficulty level in order to enable the subject to perform the 

exercises correctly.  

The subject’s performance while executing an exercise depends 

on the exercise difficulty level and the pain level. There are 

studies that show a high association between bodily pain, pain 

“catastrophizing” and exercise performance [29]. Taking into 

consideration the association between exercise performance with 

pain level and difficulty level, we define the exercise correctness 

model which gives the probability P(EC| EL, RP_pr), where EC ∈ 

[0,1,2,3] is the variable indicating how well the subject executes 

the exercise and EL ∈ [1,2,3] indicates the difficulty level of the 

current exercise, as shown in Table 5.  

Table 5. User Exercise Correctness model 

 

Recent work has proposed the use of computer vision in order to 

identify and track body motion movements and gestures. Most of 

this research work uses RGB-D data acquired by the Kinect 

sensor using the RGB-D sensor data to track body motion in order 

to ensure subject compliance with the prescribed physical therapy 

routines and activity levels [30] and to evaluate rehabilitation 

tools using this low-cost sensor [31]. In [32], the authors propose 

to apply computer vision methods. They use a popular 

commercial skeleton tracking software solution in a large 

vocabulary gesture recognition system and an RGB-D gesture 

dataset for gesture recognition. The exercise correctness can be 

defined as the similarity between the prescribed exercise 

trajectories and the trajectories of the motion that the subject 

executes during the exercising using the Dynamic Space- Time 

Warping algorithm [33,34].  



For our implementation, during real interaction, we will classify 

the exercise correctness to an integer scale [0-3], based on the 

similarity of the two executions (subject and therapist motion).    

5.5 User Quit model  
One possible user action during the interaction with the system is 

Quit. The subject may quit for several reasons. Some of them 

could be non-compliance, fatigue, even loss of interest. We 

propose to overcome these burdens by adjusting dynamically the 

exercise difficulty as mentioned in previous sections. We also 

make the assumption that the subject is more likely to quit the 

session, if they are on high pain levels.  

In order to express this dependence between quitting and pain, we 

define the user-quit model that depends on the subject’s pain 

level. This model gives the probability P(Q |RP), where Q is a 

binary variable that indicates if the user wants to quit the exercise. 

The model is shown in Table 6.   

Table 6. User Quit model 

 

During real interactions, the system will be able to collect data in 

order to define a more accurate and personalized user model that 

will be expressing the probability of quitting the session 

depending on various multisensing data describing physiological 

and psychological factors, such as current mood, performance and 

progress, facial expressions and speech data, which can be used 

for long-term adherence.  

5.6 Adaptive Session Manager GUI  
Reinforcement Learning algorithms often require a large amount 

of real or simulated interactions with the system in order to 

converge to an optimal policy. For this initial implementation of 

this approach, we apply the model-based Dyna-Q algorithm that 

uses the user models to decide which will the next state be and 

also perform offline simulation steps to update the Q-values. 

In order to get an insight of how this works, we designed a 

Graphical User Interface (GUI) that shows the session number, 

the current state of the system and the selected action of the 

manager. It also shows if the simulated session was successful or 

unsuccessful. We have integrated some simple functions to make 

the visualization easier and user-friendly, such as increase or 

decrease the simulation speed, start, stop or reset the simulation 

and plot a figure with the results. In Fig 4, we show two captions 

of the manager simulation GUI (a demo can also be viewed in 

https://www.youtube.com/watch?v=o46tiqwSX08).   

The first capture shows Session No. 21, after a small number of 

interactions of the system. At this point the system does not have 

much knowledge of the state space and action space, so the 

selected action for the current state is not the one that will lead to 

the maximum accumulated reward. More specifically, the system 

chooses to move to the next exercise very early, in spite of the 

good performance of the subject and the absence of pain. After a 

few interactions, at session No. 142, where the system has gained 

more knowledge, the manager lowers the exercise difficulty, due 

to the high level of pain indicated by both visual and speech 

input.  

For the real interactions with the subject, the system will use an 

avatar to show the exact exercise at the proposed difficulty to 

make the interaction more natural and easier for the subject.   

 

 

Figure 4. The figure shows two captions of the GUI for the manager 

simulation. It shows the current state features and the selected action 

by the manager on different simulation numbers. 

6. EXPERIMENTAL PARAMETERS AND 

RESULTS 
For this initial implementation of the proposed system, we applied 

the Dyna-Q algorithm for the learning. Each session starts from 

the same start state, where all state features are zero. At, each 

iteration, the manager chooses the next action following the        

ε-greedy policy, where the manager chooses the action that it 

believes has the best long-term effect with probability 1-ε 

(exploitation), or chooses a random action with probability ε 

(exploration). The initial value is ε = 0.9. We follow an adaptive 

exploration-exploitation strategy, decreasing the exploration 

parameter ε after each successful session. Following this 

approach, the manager starts with high exploration probability in 

order to explore as much as possible its environment. After each 

success, the manager starts to exploit its knowledge more and 

more. Considering the huge state space and the uncertainty caused 

by the models, we decrease the ε value by 0.01%, in order to let 

the manager acquires the knowledge needed. After each iteration, 

the algorithm learns a model by ‘experience’. It uses this model to 

https://www.youtube.com/watch?v=o46tiqwSX08


perform N offline simulation steps, using the observed state-action 

pairs, to update the Q-values. For this implementation, the 

algorithm performs N = 100 simulation steps. After 30000 

simulated interactions with the system, we evaluate the algorithms 

results. What we are interested in is to minimize the number of 

quits and maximize the average discounted reward . The 

discount factor we use is γ = 0.9 such that  

 

In order to plot the results, we plot the number of quits and the 

average discounted reward for each 1000 sessions. The results are 

shown in Fig. 5.  

 

 

Figure 5.  Results showing the number of quits and the average 

reward per 1000 sessions. 

We observe that the number of quits decreases as the algorithm 

learns the optimal policy. Moreover, the average discounted 

reward increases as the algorithm learns. The results are 

promising and are evidence that the manager learns by experience 

which action is best for each state in order to keep the subject safe 

and compliant to the rehabilitation session, by adapting the 

session exercise and difficulty or by asking the subject to self- 

report.   

7. DISCUSSION AND FUTURE WORK  
In this paper, we proposed ReADAPT, an adaptive multimodal 

session manager for rehabilitation physical exercising. The 

manager adapts the session by taking into consideration 

multisensing data during the interaction with the subject. Also, it 

interacts with the subject asking his/her for feedback regarding 

comfort and pain levels, in order to make the interaction more 

natural for the user. We formulated the problem as a Markov 

Decision Process and applied the Dyna-Q reinforcement learning 

algorithm to learn the optimal policy. For this first 

implementation, we defined a user model in order to get simulated 

data and train the algorithm. In order to get an insight of the 

system learning, we followed a strong assumption that the subject 

is likely to quit under high pain levels. Future work includes 

research on ACSM principles for exercise intensity judgments of 

exercise progression [36]. An important functionality of the 

proposed system is that it utilizes multisensing data in order to 

adapt to the specific subject in terms of performance and pain 

levels.  

As a future extension, we will conduct a round of Wizard of Oz 

experiments. A Wizard of Oz experiment is a research experiment 

in which subjects interact with a computer system that subjects 

believe to be autonomous, but which is actually being operated or 

partially operated by an unseen human being. The Wizard of Oz 

technique enables unimplemented technology to be evaluated by 

using a human to simulate the response of a system. Data will be 

recorded during these interactions and will be then used as 

training data for the learning algorithms. After the algorithms 

have been trained, we will conduct a second round of experiments 

in order to evaluate our system with human users who are not 

subjects as well as with trained therapists to gain intuition from 

their perspective. In future work, we will collect data during real 

interactions to evaluate how encouragement or breaks can assist 

the subject in terms of physiological and psychological state. 

An important contribution of such a system could be the 

collection of the real interaction data that will be annotated and 

combined with data from different modalities. Such data can be 

used for modeling the user pain-based reactions during exercising. 

Using exercise performance data can also lead to a valuable 

research resource an annotated multimodal human activity 

repository. Finally, this work is important in a psychological 

setting. Audiovisual descriptors [35] can be used to associate 

exercise performance with psychological conditions in order to 

evaluate how emotional and mental states can affect compliance 

to physical performance, especially in the workplace.  
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